Problem

Source: Turkey NMO 2007 Problem 2

Tags: combinatorics unsolved, combinatorics



Some unit squares of $ 2007\times 2007 $ square board are colored. Let $ (i,j) $ be a unit square belonging to the $ith$ line and $jth$ column and $ S_{i,j} $ be the set of all colored unit squares $(x,y)$ satisfying $ x\leq i, y\leq j $. At the first step in each colored unit square $(i,j)$ we write the number of colored unit squares in $ S_{i,j} $ . In each step, in each colored unit square $(i,j)$ we write the sum of all numbers written in $ S_{i,j} $ in the previous step. Prove that after finite number of steps, all numbers in the colored unit squares will be odd.