Problem

Source: Italy TST 2002

Tags: function, algebra unsolved, algebra



Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ which satisfy the following conditions: $(\text{i})$ $f(x+f(y))=f(x)f(y)$ for all $x,y>0;$ $(\text{ii})$ there are at most finitely many $x$ with $f(x)=1$.