Problem

Source: Italy TST 2003

Tags: algebra, polynomial, algebra unsolved



Let $p(x)$ be a polynomial with integer coefficients and let $n$ be an integer. Suppose that there is a positive integer $k$ for which $f^{(k)}(n) = n$, where $f^{(k)}(x)$ is the polynomial obtained as the composition of $k$ polynomials $f$. Prove that $p(p(n)) = n$.