Problem

Source:

Tags: trigonometry, geometry, angle bisector, trig identities, Law of Cosines, geometry proposed



Consider a triangle $ABC$ with $AB=AC$, and $D$ the foot of the altitude from the vertex $A$. The point $E$ lies on the side $AB$ such that $\angle ACE= \angle ECB=18^{\circ}$. If $AD=3$, find the length of the segment $CE$.