Let $P_n \ (n=3,4,5,6,7)$ be the set of positive integers $n^k+n^l+n^m$, where $k,l,m$ are positive integers. Find $n$ such that: i) In the set $P_n$ there are infinitely many squares. ii) In the set $P_n$ there are no squares.
Source:
Tags: modular arithmetic, number theory proposed, number theory
Let $P_n \ (n=3,4,5,6,7)$ be the set of positive integers $n^k+n^l+n^m$, where $k,l,m$ are positive integers. Find $n$ such that: i) In the set $P_n$ there are infinitely many squares. ii) In the set $P_n$ there are no squares.