$AC$ is diameter.
(Because $\angle ABC = \angle ADC = 90 ^\circ$)
Let $O$ is circumcircle.
So $\triangle OBD$ is isosceles triangle with $\angle BOD = 120^\circ$ and $OB=OD$.
Let $R$ is radius. ($R = OA = OB = OC = OD$)
So $2 \times \left(R \times \frac{\sqrt{3}}{2} \right) = R\sqrt{3} = BD = 3 \iff R = \sqrt{3}$.
Now
\[\left\{\begin{array}{l}
MA \times MC = MB \times MD = 2 \\
MA + MC = 2R = 2\sqrt{3}
\end{array}\right.
\iff
\left\{\begin{array}{l}
MA = \sqrt{3} + 1 \\
MC = \sqrt{3} - 1
\end{array}\right.\]
So $OM = OC - MC = \sqrt{3} - (\sqrt{3} - 1) = 1$.
Therefore $\angle COD = \angle MOD = 90^\circ$.
(Because $(OM, MD, DO) = (1, 2, \sqrt{3})$)
Hence $\angle CAD = \frac{1}{2} \angle COD = 45^\circ$.
So $\triangle DAC$ is isosceles right triangle with $\angle ADC = 90^\circ$ and $DA=DC$.
Therefore $DA=DC = \frac{AC}{\sqrt{2}} = \sqrt{6}$.
Thus $\triangle DAC + \triangle BAC = \left(\sqrt{6} \times \sqrt{6} \times \frac{1}{2}\right) + \left(\sqrt{6} \times \sqrt{6} \times \frac{1}{2}\right)\times \frac{1}{2} = 3 + \frac{3}{2} = \boxed{\frac{9}{2}}$.