Problem

Source:

Tags: algebra proposed, algebra



Let $x,y,a,b$ be positive real numbers such that $x\not= y$, $x\not= 2y$, $y\not= 2x$, $a\not=3b$ and $\frac{2x-y}{2y-x}=\frac{a+3b}{a-3b}$. Prove that $\frac{x^2+y^2}{x^2-y^2}\ge 1$.