Problem

Source:

Tags: geometry, circumcircle, perpendicular bisector, geometry unsolved



Points $M$ and $N$ lie on the side $BC$ of the regular triangle $ABC$ ($M$ is between $B$ and $N$), and $\angle MAN=30^\circ.$ The circumcircles of triangles $AMC$ and $ANB$ meet at a point $K.$ Prove that the line $AK$ passes through the circumcenter of triangle $AMN.$