Problem

Source:

Tags: geometry, circumcircle, geometric transformation, dilation, geometry proposed



A point $E$ lies on the altitude $BD$ of triangle $ABC$, and $\angle AEC=90^\circ.$ Points $O_1$ and $O_2$ are the circumcenters of triangles $AEB$ and $CEB$; points $F, L$ are the midpoints of the segments $AC$ and $O_1O_2.$ Prove that the points $L,E,F$ are collinear.