Problem

Source:

Tags: number theory, relatively prime, number theory unsolved



For each $n \in N$ let $S(n)$ be the sum of all numbers in the set {1,2,3,…,n} which are relatively prime to $n$. a. Show that $2S(n) $ is not aperfect square for any $n$. b. Given positive integers $m,n$ with odd n, show that the equation $2S(x)=y^n$ has at least one solution $(x,y)$ among positive integers such that $m|x$.