Problem

Source: BMO Problem 6

Tags: algebra, polynomial, symmetry, modular arithmetic, number theory proposed, number theory



Let $a,b$ and $c$ be positive integers such that $ab$ divides $c(c^{2}-c+1)$ and $a+b$ is divisible by $c^{2}+1$. Prove that the sets $\{a,b\}$ and $\{c,c^{2}-c+1\}$ coincide.