Problem

Source: BMO Problem 5

Tags: combinatorics proposed, combinatorics



For positive integers $t,a,b,$a $(t,a,b)$-game is a two player game defined by the following rules. Initially, the number $t$ is written on a blackboard. At his first move, the 1st player replaces $t$ with either $t-a$ or $t-b$. Then, the 2nd player subtracts either $a$ or $b$ from this number, and writes the result on the blackboard, erasing the old number. After this, the first player once again erases either $a$ or $b$ from the number written on the blackboard, and so on. The player who first reaches a negative number loses the game. Prove that there exist infinitely many values of $t$ for which the first player has a winning strategy for all pairs $(a,b)$ with $a+b=2005$.