$(HUN 5)$ Let $r$ and $m (r \le m)$ be natural numbers and $Ak =\frac{2k-1}{2m}\pi$. Evaluate $\frac{1}{m^2}\displaystyle\sum_{k=1}^{m}\displaystyle\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k-rA_l)$
Problem
Source:
Tags: algebra, series summation, trigonometry, Trigonometric Identities, IMO Shortlist, IMO Longlist