Problem

Source:

Tags: 3D geometry, tetrahedron, sphere, Locus, Locus problems, IMO Shortlist, geometry



Let a tetrahedron $ABCD$ be inscribed in a sphere $S$. Find the locus of points $P$ inside the sphere $S$ for which the equality \[\frac{AP}{PA_1}+\frac{BP}{PB_1}+\frac{CP}{PC_1}+\frac{DP}{PD_1}=4\] holds, where $A_1,B_1, C_1$, and $D_1$ are the intersection points of $S$ with the lines $AP,BP,CP$, and $DP$, respectively.