Problem

Source:

Tags: geometry, geometry proposed



Let $H$ be the orthocenter of an acute triangle $ABC,$ and let $A_1, \: B_1, \: C_1$ be the feet of the altitudes belonging to the vertices $A, \: B, \: C,$ respectively. Let $K$ be a point on the smaller $AB_1$ arc of the circle with diameter $AB$ satisfying the condition $\angle HKB = \angle C_1KB.$ Let $M$ be the point of intersection of the line segment $AA_1$ and the circle with center $C$ and radius $CL$ where $KB \cap CC_1=\{L\}.$ Let $P$ and $Q$ be the points of intersection of the line $CC_1$ and the circle with center $B$ and radius $BM.$ Show that $A, \: K, \: P, \: Q$ are concyclic.