Problem

Source:

Tags: function, analytic geometry, graphing lines, slope, algebra proposed, algebra



Let $f(x)$ and $g(x)$ be strictly increasing linear functions from $\mathbb R $ to $\mathbb R $ such that $f(x)$ is an integer if and only if $g(x)$ is an integer. Prove that for any real number $x$, $f(x)-g(x)$ is an integer.