Problem

Source:

Tags: geometry, circumcircle



In triangle $ABC$, $AB = AC$. Point $D$ is the midpoint of side $BC$. Point $E$ lies outside the triangle $ABC$ such that $CE \perp AB$ and $BE = BD$. Let $M$ be the midpoint of segment $BE$. Point $F$ lies on the minor arc $\widehat{AD}$ of the circumcircle of triangle $ABD$ such that $MF \perp BE$. Prove that $ED \perp FD.$ [asy][asy] defaultpen(fontsize(10)); size(6cm); pair A = (3,10), B = (0,0), C = (6,0), D = (3,0), E = intersectionpoints( Circle(B, 3), C--(C+100*dir(B--A)*dir(90)) )[1], M = midpoint(B--E), F = intersectionpoints(M--(M+50*dir(E--B)*dir(90)), circumcircle(A,B,D))[0]; dot(A^^B^^C^^D^^E^^M^^F); draw(B--C--A--B--E--D--F--M^^circumcircle(A,B,D)); pair point = extension(M,F,A,D); pair[] p={A,B,C,D,E,F,M}; string s = "A,B,C,D,E,F,M"; int size = p.length; real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;} d[4] = -50; string[] k= split(s,","); for(int i = 0;i<p.length;++i) { label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i])); }[/asy][/asy]