Problem

Source: RMM 2025 P4

Tags: function, algebra, RMM 2025



Let $\mathbb{Z}$ denote the set of integers and $S \subset \mathbb{Z} $ be the set of integers that are at least $10^{100}$. Fix a positive integer $c$. Determine all functions $f: S \rightarrow \mathbb{Z} $ satisfying $f(xy+c)=f(x)+f(y)$, for all $x,y \in S$