Problem

Source: RMM 2025 P1

Tags: combinatorics



Let $n > 10$ be an integer, and let $A_1, A_2, \dots, A_n$ be distinct points in the plane such that the distances between the points are pairwise different. Define $f_{10}(j, k)$ to be the 10th smallest of the distances from $A_j$ to $A_1, A_2, \dots, A_k$, excluding $A_j$ if $k \geq j$. Suppose that for all $j$ and $k$ satisfying $11 \leq j \leq k \leq n$, we have $f_{10}(j, j - 1) \geq f_{10}(k, j - 1)$. Prove that $f_{10}(j, n) \geq \frac{1}{2} f_{10}(n, n)$ for all $j$ in the range $1 \leq j \leq n - 1$.