Does there exist a sequence of positive real numbers $\{a_i\}_{i=1}^{\infty}$ satisfying: \[ \sum_{i=1}^{n} a_i \geq n^2 \quad \text{and} \quad \sum_{i=1}^{n} a_i^2 \leq n^3 + 2025n \]for all positive integers $n$.
Source: 2025 Turkey EGMO TST P2
Tags: inequalities
Does there exist a sequence of positive real numbers $\{a_i\}_{i=1}^{\infty}$ satisfying: \[ \sum_{i=1}^{n} a_i \geq n^2 \quad \text{and} \quad \sum_{i=1}^{n} a_i^2 \leq n^3 + 2025n \]for all positive integers $n$.