Problem

Source: IMO ShortList 1991, Problem 11 (AUS 4)

Tags: combinatorics, series summation, binomial coefficients, Summation, Combinatorial Identity, IMO Shortlist



Prove that $ \sum_{k = 0}^{995} \frac {( - 1)^k}{1991 - k} {1991 - k \choose k} = \frac {1}{1991}$