Problem

Source: Kyiv City MO 2025 Round 2, Problem 11.3

Tags: geometry, Euler



On sides \( AB \) and \( AC \) of an acute-angled, non-isosceles triangle \( ABC \), points \( P \) and \( Q \) are chosen such that the center \( O_9 \) of the nine-point circle of \( \triangle ABC \) is the midpoint of segment \( PQ \). Let \( O \) be the circumcenter of \( \triangle ABC \). On the ray \( OP \) beyond \( P \), segment \( PX \) is marked such that \( PX = AQ \). On the ray \( OQ \) beyond \( Q \), segment \( QY \) is marked such that \( QY = AP \). Prove that the midpoint of side \( BC \), the midpoint of segment \( XY \), and the point \( O_9 \) are collinear. The nine-point circle or the Euler circle of \( \triangle ABC \) is the circle passing through nine significant points of the triangle — the midpoints of the three sides, the feet of the three altitudes, and the midpoints of the segments connecting the orthocenter with the vertices of \( \triangle ABC \). Proposed by Danylo Khilko