Problem

Source: BIMO 1 Christmas Test 2024 P7

Tags: algebra



Let $n$ be a positive integer and $a_1\le a_2\le\ldots\le a_{n+1}$ and $b_1\le b_2\le\ldots\le b_n$ be real numbers such that for all $k\le n$, \[\binom nk\sum_{\substack{1\le i_1<i_2<\ldots<i_k\le n+1,\\i_1,i_2,\ldots,i_k\in\mathbb N}}a_{i_1}a_{i_2}\ldots a_{i_k} = \binom{n+1}k\sum_{\substack{1\le j_1<j_2<\ldots<j_k\le n,\\j_1,j_2,\ldots,j_k\in\mathbb N}}b_{j_1}b_{j_2}\ldots b_{j_k}.\]Show that \[a_1\le b_1\le a_2\le b_2\le \ldots \le a_n\le b_n\le a_{n+1}.\] (Proposed by Ivan Chan Guan Yu)