quacksaysduck wrote:
Find all functions $f:\mathbb R\to\mathbb R$ such that \[f(x^2)+2xf(y)=yf(x)+xf(x+y).\]
Let $P(x,y)$ be tghe assertion $f(x^2)+2xf(y)=yf(x)+xf(x+y)$
Let $c=f(1)$
$P(0,0)$ $\implies$ $f(0)=0$
$P(x,0)$ $\implies$ $f(x^2)=xf(x)$ (and so $f(-x)=-f(x)$)
Adding $P(x,y)$ with $P(x,-y)$ and since $f(x^2)=xf(x)$, we get $2f(x)=f(x+y)+f(x-y)$ $\forall x\ne 0$, still true when $x=0$
This implies (using $f(0)=0$) that $f(x)$ is additive and then $P(x,y)$ becomes $xf(y)=yf(x)$
And so, setting there $y=1$ : $\boxed{f(x)=cx\quad\forall x}$, which indeed fits, whatever is $c\in\mathbb R$