Problem

Source: JOM 2025 Mock 2 P3

Tags: algebra, functional equation



Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f(x)^2+f(2y+1)=x^2+f(y)+y+1\]for all reals $x$, $y$. (Proposed by Lim Yun Zhe)