Problem

Source: JOM 2025 Mock 1 P3

Tags: geometry, circumcircle



Let $\triangle MAB$ be a triangle with circumcenter $O$. $P$ and $Q$ lie on line $AB$ (both interior or exterior) such that $\angle PMA = \angle BMQ$. Let $D$ be a point on the perpendicular line through $M$ to $AB$. $E$ is the second intersection of the two circles $(DAB)$ and $(DPQ)$. The line $MO$ intersects $AB$ at $J$. Show that the circumcenter of $\triangle EMJ$ lies on line $AB$. (Proposed by Tan Rui Xuen)