Problem

Source: Brazil Cono Sur TST 2023 - T2/P4

Tags: Sequence



Let $p$ be a prime number. Determine all positive integers $a$ such that the sequence $(a_n)_{n\geq 0}$ defined by $a_0=a$ and $a_{n+1}=pa_n-(p-1)\lfloor \sqrt[p]{a_ n} \rfloor^p$, for every $n\geq0$, is eventually constant.