The numbers $1, 2, \dots , 50$ are written on a board. Letícia performs the following actions: she erases two numbers $a$ and $b$ on the board, writes the number $a+b$ on it and notes the number $ab(a+b)$ in her notebook. After performing these operations $49$ times, when there is only one number written on the board, Letícia calculates the sum $S$ of the $49$ numbers in the notebook. a) Prove that $S$ doesn't depend on the order Letícia chooses the numbers to perform the operations. b) Find the value of $S$.