Problem

Source: Belarusian National Olympiad 2021

Tags: function, algebra



Let $f(x)$ be a linear function and $k,l,m$ - pairwise different real numbers. It is known that $f(k)=l^3+m^3$, $f(l)=m^3+k^3$ and $f(m)=k^3+l^3$. Find the value of $k+l+m$.