Problem

Source:

Tags: geometry



Let \( ABCDEF \) be a cyclic hexagon such that \( AD \parallel EF \). Points \( X \) and \( Y \) are marked on diagonals \( AE \) and \( DF \), respectively, such that \( CX = EX \) and \( BY = FY \). Let \( O \) be the intersection point of \( AE \) and \( FD \), \( P \) the intersection point of \( CX \) and \( BY \), and \( Q \) the intersection point of \( BF \) and \( CE \). Prove that points \( O, P, \) and \( Q \) are collinear. Proposed by Matthew Kurskyi