Problem

Source:

Tags: geometry, isogonal conjugate points, parallel



Inside triangle \( ABC \), points \( D \) and \( E \) are chosen such that \( \angle ABD = \angle CBE \) and \( \angle ACD = \angle BCE \). Point \( F \) on side \( AB \) is such that \( DF \parallel AC \), and point \( G \) on side \( AC \) is such that \( EG \parallel AB \). Prove that \( \angle BFG = \angle BDC \). Proposed by Anton Trygub