Problem

Source:

Tags: geometry, angle bisector, median, parallelogram



Let \( AL \) be the bisector of triangle \( ABC \), \( O \) the center of its circumcircle, and \( D \) and \( E \) the midpoints of \( BL \) and \( CL \), respectively. Points \( P \) and \( Q \) are chosen on segments \( AD \) and \( AE \) such that \( APLQ \) is a parallelogram. Prove that \( PQ \perp AO \). Proposed by Mykhailo Plotnikov