Problem

Source:

Tags: geometry, concurrency



Let \( W \) be the midpoint of the arc \( BC \) of the circumcircle of triangle \( ABC \), such that \( W \) and \( A \) lie on opposite sides of line \( BC \). On sides \( AB \) and \( AC \), points \( P \) and \( Q \) are chosen respectively so that \( APWQ \) is a parallelogram, and on side \( BC \), points \( K \) and \( L \) are chosen such that \( BK = KW \) and \( CL = LW \). Prove that the lines \( AW \), \( KQ \), and \( LP \) are concurrent. Proposed by Matthew Kurskyi