Problem

Source:

Tags: geometry, trapezoid, incenter, Circumcenter



Let $I$ be the incenter and $O$ be the circumcenter of triangle $ABC,$ where $\angle A < \angle B < \angle C.$ Points $P$ and $Q$ are such that $AIOP$ and $BIOQ$ are isosceles trapezoids ($AI \parallel OP,$ $BI \parallel OQ$). Prove that $CP = CQ.$ Proposed by Volodymyr Brayman and Matthew Kurskyi