Let $BE$ and $CF$ be the medians of an acute triangle $ABC.$ On the line $BC,$ points $K \ne B$ and $L \ne C$ are chosen such that $BE = EK$ and $CF = FL.$ Prove that $AK = AL.$ Proposed by Heorhii Zhilinskyi
Source:
Tags: geometry, median
Let $BE$ and $CF$ be the medians of an acute triangle $ABC.$ On the line $BC,$ points $K \ne B$ and $L \ne C$ are chosen such that $BE = EK$ and $CF = FL.$ Prove that $AK = AL.$ Proposed by Heorhii Zhilinskyi