Find all real numbers $x$ such that exactly one of the four numbers $x-\sqrt 2$, $x-\dfrac{1}{x}$, $x+\dfrac{1}{x}$ and $x^2+2\sqrt{2}$ is not an integer.
Source: 2022 Argentina L2 P1
Tags: algebra
Find all real numbers $x$ such that exactly one of the four numbers $x-\sqrt 2$, $x-\dfrac{1}{x}$, $x+\dfrac{1}{x}$ and $x^2+2\sqrt{2}$ is not an integer.