Problem

Source: European Math Cup, 2024/J3

Tags: geometry



Let $ABC$ be a triangle with incenter $I$ and incircle $\omega$. Let $\ell$ be the tangent to $\omega$ parallel to $BC$ and distinct from $BC$. Let $D$ be the intersection of $\ell$ and $AC$, and let $M$ be the midpoint of $\overline{ID}$. Prove that $\angle AMD = \angle DBC$.