Problem

Source: 2024 Turkey Junior National Olympiad P4

Tags: algebra, Inequality, inequalities, inequalities proposed



Let $n\geq 2$ be an integer and $a_1,a_2,\cdots,a_n>1$ be real numbers. Prove that the inequality below holds. $$\prod_{i=1}^n\left(a_ia_{i+1}-\frac{1}{a_ia_{i+1}}\right)\geq 2^n\prod_{i=1}^n\left(a_i-\frac{1}{a_i}\right)$$