Problem

Source: 2024 Turkey Junior National Olympiad P3

Tags: combinatorics



Let $n\geq 2$ be an integer and $a_1,a_2,\cdots,a_n$ be distinct positive real numbers. For any $(i,j)$ in a country consisting of cities $C_1,C_2,\cdots,C_n$, there is a two-way flight between $C_i$ and $C_j$ that costs $a_i+a_j$.A traveler travels between cities of this country such that every time they pay a strictly higher cost than their previous flight. Find the maximum number of flight this traveler could take.