Problem

Source: 2024 Turkey Junior National Olympiad P2

Tags: geometry, circumcircle



Let $P$ and $Q$ be points taken inside of triangle $ABC$ such that $\angle APB=\angle AQC$ and $\angle APC=\angle AQB$. Circumcircle of $APQ$ intersects $AB$ and $AC$ second time at $K$ and $L$ respectively. Prove that $B,C,L,K$ are concyclic.