Let $S = \{2, 3, 4, \dots\}$ be the set of positive integers greater than 1. Find all functions $f : S \to S$ that satisfy \[ \text{gcd}(a, f(b)) \cdot \text{lcm}(f(a), b) = f(ab) \]for all pairs of integers $a, b \in S$. Clarification: $\text{gcd}(a,b)$ is the greatest common divisor of $a$ and $b$, and $\text{lcm}(a,b)$ is the least common multiple of $a$ and $b$.
Problem
Source: Rioplatense Math Olympiad Level 3, P5 2024
Tags: algebra, functional equation, fe, rioplatense
06.12.2024 20:47
Solved with @Enigma714 Let $P(a,b)$ be the statement. Lemma 1: $abf(a)f(b)=f(ab)^2$, for all $a,b\in S$, and $af(a)=f(a^2)$ for all $a\in S$.
We can find then $f(a^3)^2=f(a^2)f(a^4)=af(a)a^2f(a^2)=a^4f(a)^2 \implies f(a^3)=a^2f(a)$ now consider $P(a,a^2)$ then $$a.\text{lcm}(f(a), a^2)=a^2 f(a) \implies \text{lcm}(f(a), a^2)=af(a) \implies \text{gcd}(f(a),a^2)=a$$Write then $f(a)=ag(a)$ with $(g(a),a)=1$ consider $P(a,f(a))$ so $\text{gcd}(a, f(f(a))) = ag(af(a))$ so must have $g(af(a))=1$ Notice by reeplacing this definition in Lemma 1 we get: Lemma 2: $g(a)g(b)=g(ab)^2$, for all $a,b\in S$. Then in lemma 2 put $b=f(a)$ so $g(a)=1$ this concludes with $f(a)=a$ for any $a \in S$
12.12.2024 23:03