Problem

Source: Rioplatense Math Olympiad Level 2, P6 2024

Tags: geometry, rioplatense



Let $ABC$ be a triangle with $\angle BAC = 90^\circ$ and $AB > AC$. Let $D$ be the foot of the altitude from $A$ to $BC$, $M$ be the midpoint of $BC$ and $A'$ be the reflection of $A$ over $D$. Let the mediatrix of $DM$ intersect lines $AB$ and $A'C$ at $P$ and $Q$, respectively. Let $K$ be the intersection of lines $A'C$ and $AB$. Prove that $PQ$ is tangent to the circumcircle of triangle $QDK$.