Problem

Source: Pan American Girls' Mathematical Olympiad 2024, P5

Tags: PAGMO, algebra, functional equation, Reals, constant, PAGMO 2024, 2024



Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(f(x+y) - f(x)) + f(x)f(y) = f(x^2) - f(x+y),$ for all real numbers $x, y$.