Problem

Source:

Tags: algebra



For all $n \geq 1$, define $a_{n}$ to be the fraction $\frac{k}{2^n}$ such that $a_{n}$ is the closest to $\frac{1}{3}$ over all integer values of $k$. Prove that the sequence $a_{1}, a_{2}, \cdots $satisfies the equation $2a_{i+2} = a_{i+1} + a_{i}$ for all $i \geq 1$.