There are $2n$ points on a circle, $n$ are red and $n$ are blue. Janson found a red frog and a blue frog at a red point and a blue point on the circle respectively. Every minute, the red frog moves to the next red point in the clockwise direction and the blue frog moves to the next blue point in the anticlockwise direction. Prove that for any initial position of the two frogs, Janson can draw a line through the circle, such that the two frogs are always on opposite sides of the line.