Problem

Source: Baltic Way 2024, Problem 17

Tags: number theory, number theory proposed, prime numbers



Do there exist infinitely many quadruples $(a,b,c,d)$ of positive integers such that the number $a^{a!} + b^{b!} - c^{c!} - d^{d!}$ is prime and $2 \leq d \leq c \leq b \leq a \leq d^{2024}$?