Problem

Source: Baltic Way 2024, Problem 13

Tags: geometry, geometric transformation, reflection, geometry proposed



Let $ABC$ be an acute triangle with orthocentre $H$. Let $D$ be a point outside the circumcircle of triangle $ABC$ such that $\angle ABD=\angle DCA$. The reflection of $AB$ in $BD$ intersects $CD$ at $X$. The reflection of $AC$ in $CD$ intersects $BD$ at $Y$. The lines through $X$ and $Y$ perpendicular to $AC$ and $AB$, respectively, intersect at $P$. Prove that points $D$, $P$ and $H$ are collinear.