Let $ABC$ be an acute triangle with circumcircle $\omega$ such that $AB<AC$. Let $M$ be the midpoint of the arc $BC$ of~$\omega$ containing the point~$A$, and let $X\neq M$ be the other point on $\omega$ such that $AX=AM$. Points $E$ and $F$ are chosen on sides $AC$ and $AB$ of the triangle $ABC$ such that $EX=EC$ and $FX=FB$. Prove that $AE=AF$.
Problem
Source: Baltic Way 2024, Problem 12
Tags: geometry, similar triangles, geometry proposed, circumcircle