Problem

Source: Baltic Way 2024, Problem 2

Tags: algebra, functional equation, algebra proposed



Let $\mathbb{R}^+$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^+\to\mathbb{R}^+$ such that \[ \frac{f(a)}{1+a+ca}+\frac{f(b)}{1+b+ab}+\frac{f(c)}{1+c+bc} = 1 \]for all $a,b,c \in \mathbb{R}^+$ that satisfy $abc=1$.