Problem

Source: IGO 2024 Advanced Level - Problem 4

Tags: IGO, 2024, IGO 2024, Cool problem, geometry



Point $P$ is inside the acute triangle $\bigtriangleup ABC$ such that $\angle BPC=90^{\circ}$ and $\angle BAP=\angle PAC$. Let $D$ be the projection of $P$ onto the side $BC$. Let $M$ and $N$ be the incenters of the triangles $\bigtriangleup ABD$ and $\bigtriangleup ADC$ respectively. Prove that the quadrilateral $BMNC$ is cyclic. Proposed by Hussein Khayou - Syria